

Information and Coding Theory

•What is Information?

Information and Coding Theory

•What is Information?

•What is Information Theory?

- How to *efficiently* represent information sources
- How to transmit and store information with almost zero errors
 - » What is almost?

Coding Theory

- Source Coding
 - -Having a source of information, how many bits do I need to represent this source ? And How?
 - -For exact reproduction
 - -For acceptable reproduction

Coding Theory

- Channel Coding
 - Usually communications "channels" do not output what you input into them
 - A probabilistic mapping between input and output
 - Two questions:
 - » What is the maximum rate at which I can transmit information
 - » and how?

Syllabus

- Introduction to Information theory
 - Entropy, mutual information, etc...
- Source Coding
 - Lossless source codes (Huffman coding, etc...)
 - Rate Distortion Theory (briefly)
- Channel Coding
 - Capacity
 - Block Codes (Galois fields, vector spaces, examples of block codes, etc..)
 - Convolutional Codes (State and trellis diagrams, Viterbi decoding, etc..)
 - Turbo and LDPC codes (time permitting)

Grading

- •10-15% reports + quizzes + sheets etc...
- •15-20% mid-term
- 70% final

Who should attend?

• Who *likes* Communications

And/Or

• Wants to work in Communications

And/Or

- Wants to perform research in Communications And/Or
- Wants to understand more about Communications

